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Figure 1: Comparison between in situ (a and b) and post hoc (c and d) visualization of magnetic flux vorticies in superconductors. The in situ
method processes every single timestep during the simulation, and the post hoc processes every 100 timesteps after the simulation. The post
hoc analysis show that three vortices #598, #489, and #485 recombine with each other and form new three vortices #590, #593, and #592 within
the interval of 100 timesteps (from 6900 to 7000). The in situ visualization precisely shows that #588 and #489 first recombine into #590 and
#591 at timestep 6990, and then #591 and #485 recombine into #593 and #592 at timestep 6992. The semitransparent spheres are material
defects that attract vortices.

ABSTRACT

We present an in situ visualization framework to capture compre-
hensive details of vortex dynamics in superconductor simulations.
Vortices, which determine all electromagnetic properties of type-
II superconductors, are extracted and tracked at the same time
with GPU-based time-dependent Ginzburg-Landau superconduc-
tor simulations. The in situ workflow involves three parts: (1)
a tightly coupled GPU-accelerated algorithm that detects primi-
tives for ambiguity-free vortex tracking, (2) a loosely coupled task-
parallel feature-tracking method, and (3) a web-based remote visu-
alization tool for vortex dynamics analysis. Our design minimizes
the data movement and storage, maximizes the resource utilization,
and reduces the slowdown of the simulation. Our solution captures
all vortex dynamics in the simulation, previously impossible with
traditional post hoc methods. We also demonstrate in situ visual-
ization cases that help scientists understand how vortices cut each
other and recombine into new vortices, which are directly related to
energy dissipation of superconducting materials.
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1 INTRODUCTION

High temperature (type-II) superconductors, which can conduct
current with zero electrical resistance at liquid nitrogen tempera-
ture, are key materials used in power transmission, particle acceler-
ators, and magnetic resonance imaging. A key phenomenon emerg-
ing in those systems is magnetic flux vortices, or simply vortices,
which determine the energy dissipation and all electromagnetic re-
sponses in type-II superconductors. To design superconductors that
can sustain higher electric currents for applications, materials sci-
entists must understand and control the behavior of vortices.

An effective way to understand vortex behavior is to simulate
the superconductors by using numerical solvers. Here we consider
simulations based on the Ginzburg-Landau theory of superconduc-
tivity, which models the superconducting properties in terms of a
complex-valued order parameter field ψ ∈ C. In this theory, vor-
tices are defined as the singularities in ψ, which are 3D curves that
satisfy

|ψ| = 0 and −

∮
C

∇θ · dl = 2nπ, (1)

where θ and |ψ| are the phase angle and magnitude of ψ, respec-
tively, C is a small closed contour that encircles the singularity,
and n is usually ±1 and indicates the chirality of the vortex with
respect to C. Notice that the definition of magnetic flux vortices
is related to but different from that of fluid flow vortices. Vortices
in superconductors are 3D curves, which are comparable to vortex
core lines or swirling centers in fluid flows. In the rest of this pa-
per, unless otherwise noted, the term vortex means magnetic flux



vortex.
One of the scientific goals in the simulation is to study vortex

recombination [12] (so called cutting, crossing, reconnecting, or
bifurcation), which is still an unsolved problem for materials scien-
tists. As the time evolves, vortices may approach each other, twist,
conjoin locally, and detach to swap parts (Figure 1). The fine de-
tails of such behaviors are important in order for scientists to further
understand electromagnetic responses of the superconductors.

Scientists must extract and track vortices in the finest tempo-
ral resolution—every single timestep—to study vortex recombina-
tions, because vortices move rapidly before and after the event.
However, the cost of storing every timestep of the simulation is
prohibitively high because of the limited I/O capacity and band-
width. Currently, scientists manually conduct the simulations in
“full” runs and “detail” runs to investigate the details of vortex
dynamics. In the “full” runs, scientists store one single timestep
for every 102 ∼ 104 timesteps, analyze, and visualize the coarse-
grained data post hoc, and manually choose the time intervals of in-
terest. In the “detail” runs, scientists run the simulations in specific
time intervals and store every single timestep for further detailed
analysis. Such workflows involve multiple manual operations and
may miss important features in the coarse-grained analysis.

In this work, we extract and track vortices in situ—as opposed
to traditional post hoc processing—to enable scientific discovery in
the finest temporal resolution without the tedious manual process
and without overflowing the I/O. The entire in situ vortex visual-
ization workflow consists of two parts: online processing and post
hoc visualization. The online processing extracts, tracks, analyzes,
and reduces vortices in situ with the simulation; the post hoc visual-
ization provides an interactive user interface to explore and analyze
the online processing results.

We design and implement the online processing procedure for
the time-dependent Ginzburg-Landau (TDGL) simulations based
on the characteristics of both simulation and vortex tracking al-
gorithms. The simulation code, GLGPU, is a GPU-based partial
differential equation (PDE) solver [24]. The vortex tracking algo-
rithm, which has already been used in post hoc analysis, consists of
two stages—detecting primitives and transforming the primitives
into vortices.

The major challenge in the online processing is that the simu-
lation, which runs on GPUs, produces data much faster than the
analysis algorithms can process. We must design faster parallel
and asynchronous algorithms, in order to minimize the slowdown
of the simulation. The online processing hence consists of two
components—the tightly coupled, synchronous, GPU-accelerated
primitive detector and the loosely coupled, asynchronous, task-
parallel vortex analyzer. The two components play the role of pro-
ducer and consumer, respectively. The producer runs at every single
iteration of the GPU-based simulation, without any data movement.
The primitives are then transferred to the consumer for vortex re-
construction and analysis. We run the consumer asynchronously as
an independent process, in order to avoid slowing the simulation
with the time-consuming graph analysis on CPUs. In the perfor-
mance benchmarks, the amount of output is only 103−106 smaller
than the original data.

Compared with previous studies on vortex tracking in supercon-
ductors [13, 21], our in situ solution enables users to discover more
details in the simulations given the fine temporal resolutions. We
also improve the performance of vortex tracking in two ways. First,
we develop a GPU-based vortex primitive detection algorithm that
can run 200 times faster than the CPU implementation. Second, we
parallelize the graph-based vortex reconstruction algorithm, which
can make full use of all available CPU cores on the node. In sum-
mary, the contributions of this paper are fourfold:

• An in situ vortex visualization framework for analyzing and
understanding vortex dynamics in superconductors

• A GPU-accelerated algorithm to detect primitives for
ambiguity-free vortex extraction and tracking

• A task-parallel feature-tracking method that extracts and
tracks vortices asynchronously

• Applications of in situ analysis of vortex dynamics and macro
behaviors of superconductors.

2 BACKGROUND

We review the background in superconductor simulations, vortex
extraction and tracking, and in situ visualization.

2.1 TDGL simulations

Scientists use the TDGL simulations to understand the vortex dy-
namics, which is a major challenge in designing and optimiz-
ing type-II superconductors. However, the computational cost of
TDGL simulations are is high, thus the simulations were limited
to 2D [5] or small-scale 3D problems [9]. Recently, a GPU-based
TDGL implementation, GLGPU [24], was developed by a group of
scientists. GLGPU, which can model the type-II superconductors
at mesoscopically larger scales than previous efforts, is a CUDA-
based finite-difference PDE solver that runs on a single node. The
size of the model is currently limited by the GPU memory, but the
time-varying output can be arbitrarily large.

The input parameters of GLGPU include mesh geometries, pe-
riod boundary conditions, configurations of material inclusions
(such as semitransparent spheres in Figure 1), external magnetic
field, and external current. GLGPU outputs the voltage and the
order parameter field at every iteration. The voltage indicates the
energy dissipation of the material. The order parameter field has
real and imaginary parts. The outputs can be either single or double
precision.

In our study, we design in situ visualization workflows for
GLGPU. The motivating scientific questions in this paper are when
and how exactly vortices recombine with each other; specifically,
the accurate time and the behaviors of vortices before and after such
events. These questions require vortex tracking in high temporal
resolution because vortices move rapidly around events. Because
the output order parameter field resides on the GPU after every iter-
ation, we propose a GPU-accelerated algorithm to detect locations
of vortices on the GPU without moving the simulation outputs.
Further processing is offloaded to multicore CPUs asynchronously
without slowing the simulation.

2.2 Vortex extraction and tracking

We distinguish the concepts of fluid flow vortices from magnetic
flux vortices, which are fundamentally different. In fluid dynamics,
vortices can be defined in various ways, such as λ2 [14, 26], to
characterize swirling motions. Comprehensive literature reviews of
fluid flow vortices are available in [15] and [23]. In general, fluid
flow vortices are localized in two ways—regions and core lines.
In the former, vortex regions are usually extracted by thresholding
the derived scalar field such as λ2. In the latter, a vortex core line
is defined by a locus of points that satisfy certain criteria, such as
a local maximum of the vorticity magnitude. The parallel vectors
operator [20] and the feature flow fields [27], respectively, are the
established techniques to extract and track vortices in fluid flows.

In Ginzburg-Landau theory, vortices are well defined as topolog-
ical defects in a complex-valued order parameter field. The vortex
extraction algorithm is based on the following property of complex
scalar fields: there must be an equal number of vortex entry and exit
points for any given closed volume, such as a mesh cell in the simu-
lation [13]. As shown in Figure 2(a), one can first localize the punc-
tured points, that is, entries and exits on all mesh faces with the line
integral (Equation 1), and then connect the punctured points based
on the graph that describes cell/face connections in the mesh [22].
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Figure 2: Our in situ vortex visualization workflow, which consists of the online processing followed by post hoc visualization. The online
processing extracts, tracks, analyzes, and reduces vortices during the simulation; and the post hoc visualization provides an interactive user
interface to further explore and analyze vortices.

The vortex tracking algorithm extends the vortex extraction into 4D
(space and time), based on the fact that the above theorem still holds
in 4D [13, 21]. As shown in Figure 2(b), the movement of a punc-
tured point can be captured by detecting punctured virtual faces of
the prism, that is, the space-time extrusion of the mesh face. Vor-
tices and their moving trajectories can then be constructed based on
the graph analysis (Figure 2(c)).

We review the two-stage algorithm of the magnetic flux vortex
extraction and tracking: primitive detection and graph analysis. In
the primitive detection stage, for two timesteps i and j, we detect
punctured faces (PFs) Fi and space-time intersected edges (IEs)

Eji . In the graph analysis stage, we construct vortices in two indi-

vidual timesteps ({Vk
i } and {Vk′

j }) based on Fi and Fj , respec-

tively. We then build the association graph Aj
i (k, k′) based on Fi,

Fj , and Eji . The nodes of the association matrix are {Vk
i } and

{Vk′
j }, and the link (k, k′) indicates that two vortices Vk

i and Vk′
j

are associated. An event happens if a vortex has more than one link.

Compared with previous studies, in this paper we develop a
GPU-accelerated primitive detection algorithm and a task-parallel
graph analysis for vortex analysis, in order to enable efficient in situ
processing with the simulation. We also propose a method to re-
move ambiguities in previous studies (see discussions in Section 4).

2.3 In situ visualization

As summarized by a recent comprehensive review [2], in situ vi-
sualization is motivated by multiple factors—the disparity between
scientific computing and I/O rate, the increased temporal resolution
needed for accurate data analysis, and the utilization of all comput-
ing resources. Our in situ workflow benefits the analysis of vortex
dynamics in all three aspects. We categorize the related work on in
situ visualization into applications, algorithms, and infrastructures.

In situ visualization techniques have been used in various sci-
entific applications. For example, Yu et al. [33] visualized volume
and particle data in combustion simulations. Topologies in com-
bustion data can be extracted by using segmented merge trees in
situ [16]. Woodring et al. [31] developed an in situ workflow to an-
alyze eddies in the study of ocean-climate models. Fabian [10] used
in situ processing to detect fragments in explosion simulations. All
these studies aim to achieve higher temporal resolution of the data
in order to extract time-critical features. In our application, an addi-
tional challenge is that the TDGL simulation runs much faster than
the vortex analysis algorithms. We must redesign the workflow and
accelerate the algorithms in our in situ processing.

Various algorithms are used for efficient in situ visualization. For
example, the performance of in situ volume rendering depends on

image compositing algorithms, such as binary swap [18] and 2-3
swap [34]. Explorable images [28], which can generate new vol-
ume rendering results with a small number of rendered images, can
be used for in situ visualization. Similarly, pathtubes can be visu-
alized in situ with explorable images [32]. Ahrens et al. presented
an image-based in situ visualization framework for interactive ex-
ploration [1]. In addition to rendering technologies, algorithms are
proposed to select optimal numbers of time steps for in situ visu-
alization [19]. GoldRush [35] uses idle resources for in situ pro-
cessing. Bennett et al. [3] explored a method to offload the com-
putations of merge trees into secondary resources. In our study, we
decouple the heavyweight vortex analysis in an independent pro-
cess for parallel and asynchronous processing, in order to reduce
the slowdown of the simulation.

In situ infrastructures are bridges between the simulation code
and visualization methods. Typical examples include ParaView
Catalyst [11] and VisIt Libsim [30], which can help scientists and
visualization practitioners couple the simulation with production
visualization tools. Because visualization algorithms are usually
I/O intensive, various I/O solutions are proposed for in situ pro-
cessing, such as ADIOS [17], FlexIO [36], and DataSpaces [7].
Instead of using existing frameworks and I/O solutions, the char-
acteristics of both our simulation and analysis algorithms required
us to customize our in situ workflow and store the output data in
high-performance databases.

Recently, a group of visualization researchers started the “in situ
terminology project” [6], in order to uniformly classify the descrip-
tion of in situ methods. According to their terminology, the integra-
tion type and data access are direct, because the primitive detection
code is directly plugged into the TDGL simulations and shares the
same address space. The proximity is twofold: the primitive de-
tector shares the same GPU cores as the simulation, and the vortex
analyzer uses CPUs on or off the node. The synchronization is hy-
brid: the primitive detector runs synchronously with the simulation,
and the vortex analyzer runs asynchronously with the simulation.
The operation controls are not applicable in our workflow, and the
output type is explorable.

3 IN SITU VORTEX VISUALIZATION WORKFLOW

Our in situ visualization workflow (Figure 2) consists of two major
components: the online processing and post hoc visualization.

The online processing is pipelined with the primitive detector
and vortex analyzer, which play the role of a producer and con-
sumer, respectively. The primitive detector, which is tightly cou-
pled with the simulation process, detects primitives (F and E) right
after every iteration of the simulation. The vortex analyzer, which is



loosely coupled with the simulation, transforms the primitives into
vortices, tracks the vortices over time, and analyzes the properties
of vortices on the fly. The tracked vortices along with the analysis
results are written to storage for post hoc visualization.

The rationale of the producer-consumer design is threefold: re-
ducing data movement, minimizing the slowdown of the simula-
tion, and avoiding dependencies in the simulation code. First, the
producer, or the primitive detector, reduces data movement between
the GPU and main memory. The size of the primitives is much
smaller than that of the order parameter field; thus we copy back
the primitives instead of the order parameters and conserve scarce
bandwidth. Second, the consumer, or the vortex analyzer, mini-
mizes the slowdown of the simulation. At every time step, the simu-
lation continues after an asynchronous request is posted to transmit
the primitives. Further analysis will not interfere with the simu-
lation at all. Third, our implementation, especially the vortex an-
alyzer, is independent of the simulation code. Embedding visu-
alization and analysis into simulation code causes extra overhead
on management and communication. Our design finds a balance
to couple highly optimized kernels with the GPU-based simulation
and do the rest of the analysis independently. More details on the
primitive detector and the vortex analyzer are in Sections 4 and 5,
respectively.

The post hoc visualization enables users to explore and further
analyze vortex dynamics that are drawn from the simulation. The
tool not only contains traditional 3D visualizations but also pro-
vides 2D visualizations of events and distances between vortices,
which help users explore when vortices recombine and how they
move before and after the events. The web-based tool provides a
remote visualization solution and works flexibly on workstations or
mobile devices without installing any specific software.

4 TIGHTLY COUPLED AND GPU-ACCELERATED PRIMITIVE

DETECTION

We present a GPU-accelerated algorithm for the tightly coupled
vortex primitive detection in TDGL simulations. We also propose
a method to use tetrahedral subdivision to eliminate ambiguities of
vortex extraction in a hexahedral mesh.

4.1 Mesh subdivision

We detect primitives in tetrahedra instead of hexahedra to prevent
ambiguities in vortex extraction and tracking. In previous studies
that extract vortices in a hexahedral mesh, ambiguous cases could
appear if two vortices penetrate the same hexahedron at the same
time. For example, in Figure 3(a), four punctured faces are de-
tected, but we cannot determine their correspondence. Because
such ambiguities are guaranteed to not exist in tetrahedral meshes,
we subdivide the mesh into tetrahedra and detect primitives in the
new mesh. The theoretical foundation is Lemma 2 given in the Ap-
pendix.

We subdivide each hexahedron into six tetrahedra, as illustrated
in Figures 3(b), (c), and (d). Other subdivision schemes are possi-
ble, but our subdivision is conformal, which means that the tetra-
hedra share edges with neighbor cells. In the subdivided mesh, we
index the elements (cells, faces, edges) by the Cartesian coordi-
nates (i, j, k) of the corner node (A in Figure 3(b)) and the type.
After removing the duplicated cases, there are 6 types of cells, 12
types of faces, and 7 types of edges in the mesh. Notice that special
treatments are necessary for mesh boundaries. The mesh graph that
records the cell-face face-edge adjacency can also be built implic-
itly in further analysis.

In the primitive detection, we assume that the real and imagi-
nary parts of the order parameter vary linearly in a tetrahedron. We
do not need to interpolate magnitudes and phases, which are non-
linear, because in our algorithm we need only to compute phases on
vertices in our algorithm (Eq. 2 in Appendix). The location of the

punctured point can be estimated by finding where both real and
imaginary parts equal to zero. The precision of using piecewise
linear interpolation scheme is studied by Phillips et al. [22].

4.2 GPU-accelerated primitive detection

We use the GPU to detect primitives in the tetrahedral mesh for
vortex extraction. The inputs are the order parameter field of the
simulation, and the outputs are the punctured faces and intersected
space-time edges for vortex extraction and tracking. Each GPU
thread is in charge of a single mesh element (a face or a space-time
edge), which can be indexed by a unique ID.

In CUDA, threads are executed in a thread block that typically
consists of tens or hundreds of threads. Threads in the same block
share a small piece of high-speed shared memory. All threads can
access the global memory on the GPU, which is much larger but
slower than the shared memory. Outside the GPU is the host mem-
ory, and the bandwidth between the host memory and the global
memory is limited. Our algorithm takes advantage of the GPU
thread model and the memory hierarchy for accelerated tightly cou-
pled primitive detection.

4.2.1 Punctured face detection

The input of punctured face detection—real and imaginary parts of
the order paramter field—is available in the GPU global memory
after every iteration of the simulation. We examine every mesh
face for puncture by a vortex by computing the phase jump over
the mesh boundary by the contour integral defined in Equation 1. If
the contour integral is ±2π, the face is punctured; the puncture is
located where both real and imaginary parts of the order parameter
are zero.

In the parallel execution, each GPU thread is in charge of a sin-
gle mesh face. A list is used to collect detection results. We use a
memory buffer in the global memory to store the list. An atomic
integer records the end location of the list. To reduce memory con-
tention, for each CUDA thread block we first store the results in
shared memory and then merge them into the list in global memory
after all threads are finished in the thread block. The list of punc-
tured faces, each of which consists of the face ID, chirality, and the
puncture location, is copied back to the host memory for further
analysis.

We must carefully manage the memory footprint of our analysis
because the GPU memory budget is limited. First, we use a GPU
memory buffer that is allocated by the simulation and shared by the
simulation and analysis. The GPU memory buffer is not used by
the simulation during our analysis and has the same capacity as the
order parameter field. Second, we store the list of punctured faces
in a compact way. We use only 12 or 16 bytes for a punctured face,
depending on the total number of faces in the mesh. If the mesh
has fewer than 231 faces, we use 31 bits for the face ID and 1 bit
for chirality, otherwise 63 bits for the face ID and 1 bit for chirality.
The 63 bits suffice because there are not likely to be more than 263

faces in the current GLGPU implementation. We store the puncture
location—the barycentric coordinates on the face—with two 32-bit
floating-point values, so a punctured face takes 12 or 16 bytes in
total.

4.2.2 Intersected space-time edge detection

The input data of the intersected space-time edge detection are the
phase field of the two adjacent iterations in the simulation, and the
outputs are a list of intersected space-time edges. The detection
of space-time edges is similar to that of punctured faces. For each
edge in the mesh, we extrude the edge into the time dimension and
compute the integral over the space-time contour. The space-time
edge is intersected if the contour integral equals ±2π.

Similar to the punctured face detection, each GPU thread is in
charge of an edge, and we use the shared memory to avoid con-



A

B

C

F
D

E

G
H

C

D

F

G

D

E
F

G

A

D

E F

A

D

C

F

A

B

C

D

E
F

G
H

A

B

C

F
F

A

C

D

E

G

D

E

G
H

Vortex A Vortex BAmbiguous Case

(a) (b) (c) (d)
Figure 3: Mesh subdivision for ambiguity-free vortex extraction and tracking: (a) the ambiguity case of a hexahedron intersected by two vortices;
(b) the unambiguous case results where vortex A punctures cells DEHG and DEFG while vortex B punctures ABCF ; the punctured faces
are DEH, DGE, ABC, and BFC; (c) and (d) show how a hexahedron is subdivided into six tetrahedra.

tentions in the global memory on the GPU. Each intersected space-
time edge is a tuple of the edge ID and chirality, which can be en-
coded with 4 or 8 bytes depending on the total number of edges in
the mesh. Upon completion of the detection, the results are trans-
ferred back to the host memory. The amount of the output is usually
smaller than that of punctured faces. The intersected space-time
edge detection takes about 20% of the simulation time, which is
less than for the punctured face detection.

Overall, the primitive detection greatly reduces the amount of
data for further analysis. Typically, the amount of output is only
10−5 to 10−2 of the order parameter field, depending on the data
complexity. In our benchmark, the GPU-accelerated detection is
more than 200 times faster than a CPU-based implementation.

4.3 Simulation coupling and adaptive detection

The pseudocode of the simulation coupling is in Algorithm 1. We
tightly couple the GPU-accelerated primitive detection with the
simulation; thus there is no data movement for the punctured face
detection. The intersected edge detection needs to copy the phase
field in the previous timestep, but the cost to copy data on the same
GPU is minor. The time for copying results back to the main mem-
ory is also negligible compared with that of the detection.

We further reduce the overall online processing time by adapting
the primitive detection. If we detect the primitives in every itera-
tion, the primitive detection takes about 50% of the computation
time in the simulation. We instead skip a frame if there are no in-
tersected space-time edges. The rationale of the adaptive detection
is based on the vortex tracking algorithm. If there are no inter-
sected space-time edges for timesteps i′ and i (|Eii′| = 0), the IDs
of punctured faces remain the same, but the puncture locations may
change within the bounds of those faces. We regard the movement
of vortices as negligible in this case. Depending on the stability
of the simulations, we can skip up to 95% of the timesteps in our
experiments.

5 LOOSELY COUPLED AND TASK-PARALLEL VORTEX ANAL-
YSIS

The vortex analyzer extracts, tracks, analyzes, and reduces vortices
in the in situ workflow. The main challenge in the vortex analyzer
is the unbalanced producer (simulation/primitive detector) and con-
sumer (vortex analyzer) rate. Hence, we design and implement
a task-parallel graph analysis scheme. Because the producer can
generate vortex primitives much faster than the consumer can, the
consumer could overflow memory. We schedule the graph analysis
tasks on different threads in parallel, in order to improve the con-
suming rate.

Algorithm 1 Main loop of the tightly coupled vortex primitive de-
tection. TDGL is the simulation; comm is the communicator, and
isend() is the non-blocking send. ψ′ and ψ are the order param-
eter fields of the previous and the current time step, respectively;
i′ and i are the time step of the previous and the current time step,
respectively. PFs and IEs are abbreviations for punctured faces and
intersected space-time edges, respectively.

i← 0
while !TDGL.finished() do

ψ ←TDGL.iterate() ⊲ Get ψ from the simulation
if i = 0 then ⊲ Process the first time step
Fi ←detect PFs GPU(ψ) ⊲ Detect PFs
comm.isend(tag=‘F’, {i,Fi}) ⊲ Send PFs

else
Eii′ ←detect IEs GPU(ψ′, ψ) ⊲ Detect IEs
if |Eii′| = 0 then

continue ⊲ If vortices do not move, skip the current
time step

else
comm.isend(tag=‘E’, {i′, i, Eii′}) ⊲ Send IEs
Fi ←detect PFs GPU(ψ)
comm.isend(tag=‘F’, {i,Fi})
{i′, ψ′} ← {i, ψ} ⊲ Copy the current time step

end if
end if
i← i+ 1

end while

5.1 Parallel task execution

As shown in Figure 4, our task-parallel model is an acyclic directed
graph, where the nodes are data and tasks and the links define their
dependencies. There are two types of data nodes: punctured faces
Fi and intersected space-time edges Eii′, where i′ and i are the in-
dices of timesteps. Likewise, there are two types of tasks: extrac-
tion tasks (Exi) and tracking tasks (Tri

i′). During the run, the data
nodes are streamed into the graph, and the tasks are dynamically
created. The extraction task Exi depends on the punctured face list
Fi. The tracking task Tri

i′ depends on multiple nodes, including
Fi′, Fi, and Tri

i′.

We use the thread pool model to execute the tasks in parallel. The
model consists of the main thread and a number of worker threads.
The main thread manages the communication and task scheduling,
and the worker threads execute tasks. The pseudocode of the main
thread loop is shown in Algorithm 2. Notice that we must con-
trol the task scheduler to prevent the producer from overflowing the



Algorithm 2 Main loop of the loosely coupled vortex extraction
and tracking. sched is the scheduler of the task-parallel execution
with dependencies, and comm is the communicator. Ex and Tr are
extraction and tracking tasks, respectively.

sched.start(max num threads)

while comm.probe() and not sched.overflowed() do
⊲ Test if message comes in and the scheduler is not overflowed

comm.recv(&tag, &data)

if tag=‘F’ then
{i,Fi} ←data

sched.add(Exi(Fi), depend=φ)
else if tag=‘E’ then
{i′, i, Eii′} ←data

sched.add(Tri
i′(E

i
i′)), depend={Exi′, Exi})

end if
end while
sched.wait for all() ⊲ Wait until all tasks finish

Ex0

Tr01 Tr12 Tr23

Ex1 Ex2

Trn-1
n-2

Exn-2 Exn-1...

...

...

...F0 F1 F2E01 E12 Fn-2 Fn-1E n-1
n-2

Data Dependency Task Dependency
Figure 4: Dependency graph in the parallel execution of vortex ex-
traction and tracking. Each extraction task Exi depends on the punc-
tured faces Fi; each tracking task Trii′ depends on the intersected
space-time edges Ei

i′ and the extraction tasks Exi′ and Exi.

consumer. If memory is insufficient to schedule an upcoming task,
we have to block communication and wait until some tasks finish
and release enough memory. The blocking of communication may
eventually block the simulation in this case.

5.2 Online vortex analysis and reduction

We analyze and reduce the vortices on the fly as soon as they are
extracted and tracked. Based on requirements from the scientists,
we generate the following analysis results that represent the dynam-
ics of vortices. The outputs are also stored in a database with the
vortices.

Events. The vortex events are defined as topological changes of
vortices: birth, death, split, merge, and recombination. The event
detection is based on the association graph. For example, recombi-
nation happens if two vortices in the current timestep are associated
with another two vortices in the next timestep. The in situ detection
of events can accurately tell when and which vortices are involved
in the event.

Distance. We compute the minimum distance between vortices
at every time step. The output of the distances is stored in a ma-
trix. Scientists are interested in how the distance between vortices
changes over time, especially for vortices that recombine. In the
following sections we also use the matrix for distance projection in
order to provide an occlusion-free 2D visualization.

Moving speed. The moving speed V of a vortex, which is di-
rectly related to the energy dissipation of the superconducting ma-
terial, is defined as the area swept by the vortex in unit time. The
swept area of an interval is computed by first tessellating the vor-
tices in the two time steps into triangles and then summing up the
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t0=142,601, {1306, 1484}->{1490, 1491}

Figure 5: Distance plot (minimum distance between vortices before
and after recombination) in the Crossing simulation. The legends
show the timestep of recombination and the involved vortices of the
event. The dark blue line corresponds to the event in Figure 10.

areas of the triangles. The results are stored with the output vor-
tices.

The data reduction of vortices is based on the work of Phillips
et al. [22], which reduces the data size by geometry simplifica-
tion and parameterization. First, the vortices are simplified with
the Ramer-Douglas-Peucker [8] algorithm, which approximates an
input curve by a series of points. Second, we use Bezier curves
to dynamically fit the simplified curve [25]. Both data reduction
algorithms are lossy but error bounded. Notice that errors in the
former algorithm are measured by the maximum distance between
the simplified curve and the input curve, and the errors in the latter
algorithm are measured by the squared error between the input and
fitted curve. Given a reasonable error bound (0.1 and 0.01 in our
experiments), the output vortices can be reduced up to 90%.

6 POST HOC VISUALIZATION

We provide post hoc visualization for users to explore the online
analysis results. The visualization involves four linked views: spa-
tial, timeline, distance projection, and distance. The design goals
are to help scientists explore spatial distributions of vortices and
analyze the changes of vortices over time.

The spatial view visualizes the 3D geometries of vortices and
material inclusions in the simulation, allowing users to identify and
explore important spatial structures of vortices. In this view, the
vortex curves are extruded into tubes for better shading and percep-
tion than possible with plain line geometries. The color indicates
the ID of vortices. The color of a vortex remains the same over time
unless the vortex has a topological change.

The timeline view visualizes the events over time with glyphs.
Users can navigate the time-varying vortices by moving the cursor
in the timeline view.

The distance view (Figure 5) visualizes how distances between
vortices change before and after recombinations. We design this
view because scientists would like to know how the minimum dis-
tance changes before and after a recombination. Users can also
select vortices to see how they morph over time, which is the key in
the study of vortex dynamics. The x-axis is the relative time with
respect to the time of recombination, and the y-axis is the mini-
mum distance of vortices that cross with each other at time 0. If
one or more time steps are skipped, we render the distance plot by
interpolating adjacent time steps that are available (no timesteps are
skipped in Figure 5).

The distance projection view (Figure 6) maps the minimum dis-
tances between vortex lines into 2D space for individual time steps.
The rationale for the projection view is twofold. First, the pro-
jection view provides a 2D visualization of vortices without any
occlusions. Although the geometric information in the projection
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Figure 6: Distance projection in the Unstable BX simulation. Two
vortices approach (a) and then repel (b) each other before and after
the recombination. The opacity in the figure encodes the time.
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Figure 7: Software stack of our in situ vortex visualization framework.
Various tools and APIs are used in both online processing and post
hoc visualization.

is lost, the distance information is still kept in the 2D projections.
Second, the projection view can visualize the change of distances
between time steps by animation. The projection provides a visual
clue about the distance changes and helps users select vortices of
interest. The distance between points in the 2D space is preserved
as much as possible. Users can focus on one single time step and
optionally visualize the points in a limited time interval simulta-
neously. Our implementation uses the force-directed algorithm to
compute the layout of points. To ensure the temporal coherence
avoid rotation, we also align the projections in adjacent time steps.

7 IMPLEMENTATION

We use various tools and APIs to build our in situ visualization
workflow. The software stack of our implementation is illustrated
in Figure 7.

The tightly coupled primitive detector is implemented with
CUDA and C, without any third-party libraries. The output primi-
tives are sent to the loosely coupled vortex analyzer asynchronously
via UNIX pipes. The primitives can also be transferred to the vor-
tex analyzer running on a remote machine by redirecting the pipe
with the netcat command in UNIX.

The loosely coupled vortex analyzer is written in C++11. The
Intel Threading Building Blocks (TBB)1 library provides APIs to
schedule the task-parallel execution and lock-free data structures to
achieve high concurrency. The output data, including vortex lines,
association matrices, events, and all other analysis results, are seri-
alized with Google protocol buffers2 and then written to storage by
Facebook RocksDB.3 We store data in a database instead of files be-
cause RocksDB provides a high-performance persistent key-value
store optimized for multithreaded writes. We use bzip2 to further
compress the output in the database. Notice that the vortex analyzer

1https://www.threadingbuildingblocks.org/
2https://developers.google.com/protocol-buffers/
3http://rocksdb.org/
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Figure 8: Timings of TDGL iterations (Bramp simulation), primi-
tive detection, vortex extraction, and vortex tracking with respect
to different numbers of primitives. Timings of detect ∗ GPU,
detect ∗ CPU, and detect ∗ CPU mt correspond to the primitive
detection with GPU, single-threaded CPU, and multithreaded CPU,
respectively.

can run on either the same node as the simulation or a standalone
node with network connections. We usually run both the primitive
detector and the vortex analyzer on the same node to fully utilize
the hardware resources of the GPU and all CPU cores.

The web server is hosted with Node.js,4 which is a server-side
JavaScript runtime. We build bindings of our C++11 code for
Node.js, in order to enable access to the output data in the database.
The web server and clients exchange queries and results via Web-
Sockets, which provides full-duplex communication.

The web client is implemented with WebGL and D3.js [4]. The
3D interactive visualization is based on Three.js,5 which manages
the scene graph and wraps WebGL. The 2D visualizations are ren-
dered in SVG and overlaid on top of the 3D view.

8 PERFORMANCE BENCHMARKS

The performance benchmarks are shown in Table 1, Figure 8,
and Figure 9. The benchmarks were conducted on a workstation
equipped with two quad-core Intel Xeon E5620 CPUs, 12 GB main
memory, and an NVidia K40c GPU. Each CPU supports up to 8
hardware threads, and the GPU has 2,880 stream cores and 12 GB
memory. The simulation process that manages the GPU simulation
and primitive detection is single threaded, and the vortex tracker
can use up to all eight CPU cores on the machine. The output data
are written to the database on a local hard disk drive. We analyze
the performance of our in situ workflow in four aspects: speedup
of the GPU-accelerated primitive detection, efficiency of adaptive
primitive detection, performance of task-parallel vortex analyzer,
and I/O cost.

First, we measure the speedup of the GPU-accelerated primitive
detection algorithms. The timings with respect to the different num-
bers of primitives are shown in Figure 8. The baseline approach is
a software implementation that can run on either single or multi-
ple (eight in the experiments) CPU threads. The timings of the
GPU algorithms include the data transfer, that is, the copy back of
primitives from the GPU memory. The performance of the prim-
itive detection does not change significantly with the number of
primitives. On average, the punctured face detection is 208× and
37×, compared with the single-threaded and multithreaded CPU
implementation, respectively. Likewise, the intersected space-time

4https://nodejs.org/
5http://threejs.org/



Table 1: Simulation specifications and timings. Fall is the total number of timesteps in the simulation, and Fskipped is the number of skipped
timesteps in the adaptive primitive detection. Ttotal, Tf , and Te are the total simulation time, punctured face detection time, and intersected edge

detection time in seconds, respectively. T
(async)
analysis

is the CPU time of the vortex analyzer, which does not affect Ttotal because the analysis is

asynchronous. Ssim, Sp, and Sout are the size of the order parameter field data, vortex primitives, and final outputs in the database, respectively.

Name Resolution Fall Fskipped Ttotal Tf Te T
(async)
analysis

Ssim Sp Sout Sout/Ssim

Bramp 128 × 512 × 64 63,000 59,614 1,550.92 138.07 1,013.16 340.93 1.923 TB 67 MB 16 MB 0.0008%

Unstable BX 256 × 128 × 32 200,000 1,211 3,492.96 2,011.55 801.50 4,196.25 1.53 TB 9.53 GB 477 MB 0.03%

Crossing 256 × 256 × 128 830,000 261,829 82,527.33 45,803.19 26,874.04 73,250.32 4.75 TB 103 GB 11 GB 0.23%

105

Figure 9: CPU utilization (left axis) and the producing/consuming rate
(right axis) in the task-parallel execution (Bramp simulation).

edge detection on the GPU is 262× and 32× faster than the single-
threaded and multithreaded CPU code, respectively.

Second, we evaluate the efficiency of the adaptive primitive de-
tection strategy in Section 4.3. The criterion to skip a time step
is whether the number of intersected space-time edges is zero. As
shown in Table 1, the percentage of skipped time steps ranges from
1% to 95%; thus the efficiency highly depends on the simulation. In
general, if the simulation is more stable, the adaptive strategy can
save more time.

Third, we benchmark the loosely coupled, asynchronous, and
task-parallel vortex tracker in Section 5. Figure 8 shows the tim-
ings of extraction tasks and tracking tasks with respect to different
numbers of primitives. We can see that the execution time of an
individual task grows linearly with the number of primitives. In
most cases, the execution time is much longer than that of the pro-
ducer (simulation and primitive detection), which confirms that we
must use parallelism to boost the performance of the consumer (vor-
tex detector). Figure 9 visualizes the CPU utilization of the in situ
workflow as the simulation time elapses. The CPU utilization re-
flects how many CPU cores are used. Notice that the online data
analysis and I/O also run in the experiment. The CPU utilization
of the producer remains almost constant (100%), because the GPU
is managed by a single CPU thread. The CPU utilization of the
consumer, which is proportional to the number of primitives, varies
from 10% to 1500%. At the early stage of the simulation, the sys-
tem is highly unstable; thus there are usually more vortices, and
the workload of the vortex tracker is higher. After the simulation
is stabilized, the workload is also stabilized—the workload of the
consumer is about three times higher than that of the producer.

Fourth, we measure the I/O cost of the in situ workflow. The
output data written in the database is only about 10−5 to 10−2 of
the order parameter field data in the simulation. As recorded by
the database log, the peak output I/O bandwidth is about 30 MB/s,
which is much more affordable than storing the raw simulation out-
puts.

Overall, the cost of the whole in situ workflow ((Tf +

Te)/Ttotal) is 75%∼88% of the simulation, depending on the data
complexity. Notice that Tf and Te are already much less than they

used to be with CPUs, and we also hide T
(async)
analysis in T total by

the asynchronous task-parallel execution. The in situ workflow also
greatly reduces the amount of output while obtaining the most pre-
cise analysis results.

9 APPLICATION RESULTS

We demonstrate application cases of the in situ vortex visualization.
The specifications of the simulations are in Table 1.

9.1 Unstable BX simulation

The Unstable BX simulation is conducted in order to understand
the periodic energy dissipative states in a superconductor with sev-
eral inclusions. The magnetic field is aligned with the external cur-
rent, which would result in no vortex dynamics (because of the ab-
sence of Lorentz forces). However, thermal fluctuations and ma-
terial defects, modeled as spherical inclusions, lead to interesting
behavior. Scientists would like to study when and how vortices re-
combine with each other while in periodic motion.

Our in situ workflow enables the detailed visualization and anal-
ysis of vortex dynamics. Figure 1 compares the visualization re-
sults from both traditional post hoc methods and in situ methods.
Previously, scientists saved the order parameter field for every 100
timesteps and then analyzed the data in low temporal resolution af-
ter the simulation. As shown in Figures 1(c) and (d), a “compound”
event happens, which involves vortices #588, #489, and #485 at
timestep 6,900 and vortices #590, #593, #592 at timestep 7,000.
However, we cannot read any more details within the 100 timesteps.
The in situ processing enables us to see two recombination events.
At timestep 6990, two vortices #588 and #489 cross each other and
swap parts. Two new vortices #590 and #591 are generated after the
recombination at timestep 6991. Right after this event, #590 and
#485 recombine into #592 and #593. Another example is shown
in Figure 6, which visualizes a recombination event with distance
projection. We can observe how vortices deform, bend, attract each
other, and then repel each other after the event.

9.2 Crossing simulation

Scientists study vortex crossings in superconducting slabs that are
induced by tilting the applied magnetic field [29]. The way vor-
tices in superconductors cross each other has been studied for many
years, but most studies were performed either under artificial condi-
tions or on very small length scales. The GLGPU simulation makes
it possible to reveal realistic situations. The in situ visualization of
vortices and their distances conveys the physics of these crossing
events, which typically consist of merge, split, and recombination.

As shown in Figure 10, the early stage of the simulation is un-
stable and chaotic. Vortices are mostly stable in the later stage,
yet a few recombinations happen. A traditional post hoc workflow
cannot capture the rapidly changing vortices near recombinations.
With our in situ framework, we can find the exact time of the events
and observe how vortices morph before and after the events.

We generate the distance plot (Figure 5) in situ, recently used to
study various vortex recombination scenarios [12]. Previously in
the post hoc workflow, scientists had to run the simulation twice to
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Figure 10: In situ vortex visualizations of the Crossing simulation: (a) the timeline view showing different types of events (B: birth, D: death,
M: merge, S: split, R: recombination) over time; (b) the early stage of the simulation; (c) and (d) a recombination event that is highlighted by the
black circles. The distance projection plots are in the left bottom corner of the images.

generate the distance plot. In the first “full” run, the order parameter
field is stored every 250 iterations. After the first run, scientists
choose an interval of interest that involves a recombination event.
In the second “detail” run, every iteration in this interval (2,000
timesteps) is stored for post hoc analysis. Such a workflow requires
a manual process and extra computation resources, and it may miss
important features in the simulation.

With the in situ workflow, the distance plot can be automati-
cally generated with no manual operations or additional simulation
runs. The recombination events and vortex curves are extracted and
stored based on every single iteration in situ. Compared with the
traditional post hoc workflow, the in situ workflow enables scien-
tists to visualize and analyze the vortex dynamics in greater detail
and with less work than before.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we present an in situ vortex visualization frame-
work for GPU-based TDGL simulations. The system consists of
tightly coupled GPU-accelerated primitive detection for ambiguity-
free vortex analysis, loosely coupled task-parallel feature tracking,
and web-based visualizations. Applications show that the only so-
lution to our driving scientific problem—finding vortex recombina-
tions in the rapidly changing simulations—is the in situ workflow.

We would like to extend our study in four directions. First, we
are going to design the in situ workflow for the next-generation
TDGL simulation, which is based on an unstructured mesh in dis-
tributed memory. Simulation steering is also going to be a nec-
essary component in the future system. Second, we would like
to apply our task-parallel design to other feature tracking prob-
lems. Third, we are going to develop a scalable solution to visualize
events in long time sequences for in situ visualization. Fourth, we
plan to use our in situ workflow in other complex-valued Ginzburg-
Landau simulations such as Bose-Einstein condensation and super-
fluidity.

APPENDIX

In this appendix, we prove that a tetrahedron in our mesh subdivi-
sion cannot be punctured by two vortices and therefore ambiguity-
free vortex extraction is guaranteed. In the discrete ψ field, we
calculate the phase jump over a mesh edge AB by

∆AB =

∫
AB

∇θ · dl = mod (θB − θA + π, 2π)− π, (2)

where θA and θB are the phase angle on nodes A and B, respec-
tively. Notice that the modulo maps ∆AB into the range of [−π, π),
so we cannot measure any larger phase jumps over mesh edges than
this range.

Lemma 1. If x+ y+ z = 2π, x, y, z ∈ [−π, π), then x, y, z > 0.

Proof. Assume z ≤ 0. Then x + y ≥ 2π. A contradiction occurs
because x < π and y < π.

Lemma 2. There is at most one pair of punctured points on a tetra-
hedron, if the phase jump over every edge of this tetrahedron is in
the range of [−π, π).

A

B

C

D

As shown in the right figure, in tetra-
hedron ABCD, the phase jumps over
every edge ∆AB , ∆BC , ∆CA, ∆CD ,
∆DA, and ∆BD are in the range of
[−π, π). We prove this lemma by con-
tradiction.

Proof. Without loss of generality, we
assume there are two pairs of punctured faces, so that ∆AB +
∆BC +∆CA = 2π, ∆AC +∆CD +∆DA = 2π, ∆AD +∆DB +
∆BA = −2π, and ∆BD + ∆DC + ∆CB = −2π. Based on
Lemma 1, we have ∆CA > 0 and ∆AC > 0. A contradiction
occurs because ∆CA = −∆AC . The lemma is true because rela-
beling the tetrahedron can cover all cases (any pair of faces have
common edge, which is AC in our case).
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